Development of High Energy Density Diaminocyclopropenium?Phenothiazine Hybrid Catholytes for Non?Aqueous Redox Flow Batteries

نویسندگان

چکیده

This report describes the design of diaminocyclopropenium-phenothiazine hybrid catholytes for non-aqueous redox flow batteries. The molecules are synthesized in a rapid and modular fashion by appending diaminocyclopropenium (DAC) substituent to nitrogen phenothiazine. Combining versatile C-N coupling protocol (which provides access diverse derivatives) with computation structure-property analysis enabled identification catholyte that displays stable two-electron cycling at potentials 0.64 1.00 V vs. Fc/Fc+ as well high solubility all oxidation states (?0.45 M TBAPF6/MeCN). was deployed energy density RFB, exhibiting >90 % capacity retention over 266 hours cell >0.5 electron concentration.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

High-Performance Oligomeric Catholytes for Effective Macromolecular Separation in Nonaqueous Redox Flow Batteries

Nonaqueous redox flow batteries (NRFBs) represent an attractive technology for energy storage from intermittent renewable sources. In these batteries, electrical energy is stored in and extracted from electrolyte solutions of redox-active molecules (termed catholytes and anolytes) that are passed through an electrochemical flow cell. To avoid battery self-discharge, the anolyte and catholyte so...

متن کامل

High–energy density nonaqueous all redox flow lithium battery enabled with a polymeric membrane

Redox flow batteries (RFBs) are considered one of the most promising large-scale energy storage technologies. However, conventional RFBs suffer from low energy density due to the low solubility of the active materials in electrolyte. On the basis of the redox targeting reactions of battery materials, the redox flow lithium battery (RFLB) demonstrated in this report presents a disruptive approac...

متن کامل

A Numerical Simulation of Vanadium Redox Flow Batteries

The recent penetration of renewable sources in the energy system caused a transformation of the needs of the distribution system and amplified the need of energy storage systems to properly balance the electricity grid. Among electrochemical energy storage devices, all vanadium flow batteries are those of the most promising technologies due to their high efficiency, long lifetime, reliability a...

متن کامل

Redox Species of Redox Flow Batteries: A Review.

Due to the capricious nature of renewable energy resources, such as wind and solar, large-scale energy storage devices are increasingly required to make the best use of the renewable power. The redox flow battery is considered suitable for large-scale applications due to its modular design, good scalability and flexible operation. The biggest challenge of the redox flow battery is the low energ...

متن کامل

High-Power-Density, High-Energy-Density Fluorinated Graphene for Primary Lithium Batteries

Li/CFx is one of the highest-energy-density primary batteries; however, poor rate capability hinders its practical applications in high-power devices. Here we report a preparation of fluorinated graphene (GFx) with superior performance through a direct gas fluorination method. We find that the so-called "semi-ionic" C-F bond content in all C-F bonds presents a more critical impact on rate perfo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Angewandte Chemie

سال: 2021

ISSN: ['1521-3773', '1433-7851', '0570-0833']

DOI: https://doi.org/10.1002/ange.202111939